Thursday, October 27, 2011

Bloom Energy Fuel Cell: Powering your home and buildings soon!

 

What is a fuel cell? 


A fuel cell is an electrochemical device that combines hydrogen and oxygen to produce electricity, with water and heat as its by-product.  As long as fuel is supplied, the fuel cell will continue to generate power.  Since the conversion of thefuel to energy takes place via an electrochemical process, not combustion, the process is clean, quiet and highly efficient – two to three times more efficient than fuel burning.
No other energy generation technology offers thecombination of benefits that fuel cells do.  In addition to low or zero emissions, benefits include high efficiency and reliability, multi-fuel capability, siting flexibility, durability, scalability and ease of maintenance.  Fuel cells operate silently, so they reduce noise pollution as well as air pollution and the waste heat from a fuel cell can be used to provide hot water or space heating for a home or office. 
See all of the different applications fuel cells can be used for!


Why Use Fuel Cells?

 

 

 

Why is the U.S. government working with universities, public organizations and private companies to overcome all the challenges of making fuel cells a practical source for energy? More than a billion dollars has been spent on research and development on fuel cells. A hydrogen infrastructure will cost considerably more to construct and maintain (some estimates top 500 billion dollars).


Why does the president think fuel cells are worth the investment?

The main reasons have everything to do with oil. America must import 55 percent of its oil.


By 2025 this is expected to grow to 68 percent. Two thirds of the oil Americans use every day is for transportation. Even if every vehicle on the street were a hybrid car, by 2025 we would still need to use the same amount of oil then as we do right now [Source: Fuel Cells 2000]. In fact, America consumes one quarter of all the oil produced in the world, though only 4.6 percent of the world population lives here [Source: National Security Consequences of U.S.
Oil Dependency].


A Fuel Cell That Runs on Waste

Environmental engineers at Pennsylvania State University developed a fuel cell that runs on wastewater. The cell uses microbes to break down organic matter. The matter in turn releases hydrogen and electrons. The fuel cell can break down approximately 80 percent of the organic matter in wastewater, and like PEMFCs the output is heat and pure water. The energy generated by the fuel cell could help power a water treatment plant pump system.
Experts expect oil prices to continue to rise over the next few decades as more low-cost sources are depleted. Oil companies will have to look in increasingly challenging environments for oil deposits, which will drive oil prices higher.


Concerns extend far beyond economic security. The Council on Foreign Relations released a report in 2006 titled "National Security Consequences of U.S. Oil Dependency." A task force detailed numerous concerns about how America's growing reliance on oil compromises the safety of the nation. Much of the report focused on the political relationships between nations that demand oil and the nations that supply it. Many of these oil rich nations are in areas filled with political instability or hostility. Other nations violate human rights or even support policies like genocide. It is in the best interests of the United States and the world to look into alternatives to oil in order to avoid funding such policies.
Using oil and other fossil fuels for energy produces pollution. Pollution issues have been in the news a lot recently -- from the film "An Inconvenient Truth" to the announcement that climate change and global warming would factor into future adjustments of the Doomsday Clock. It is in the best interest for everyone find an alternative to burning fossil fuels for energy.

Fuel cell technologies are an attractive alternative to oil dependency. Fuel cells give off no pollution, and in fact produce pure water as a byproduct. Though engineers are concentrating on producing hydrogen from sources such as natural gas for the short-term, the Hydrogen Initiative has plans to look into renewable, environmentally-friendly ways of producing hydrogen in the future. Because you can produce hydrogen from water, the United States could increasingly rely on domestic sources for energy production.
Other countries are also exploring fuel-cell applications. Oil dependency and global warming are international problems. Several countries are partnering to advance research and development efforts in fuel cell technologies. One partnership is The International Partnership for the Hydrogen Economy.







International Partnership for the Hydrogen Economy





Australia





India





Brazil





Italy





Canada





Japan





China





New Zealand





European Commission





Norway





France





Korea





Germany





Russian Federation





Iceland





United Kingdom





United States


Clearly scientists and manufacturers have a lot of work to do before fuel cells become a practical alternative to current energy production methods. Still, with worldwide support and cooperation, the goal to have a viable fuel cell-based energy system may be a reality in a couple of decades.

 

Fuel Cell Efficiency

Hydrogen
Hydrogen is the most common element in the universe. However, hydrogen does not naturally exist on Earth in its elemental form. Engineers and scientists must produce pure hydrogen from hydrogen compounds, including fossil fuels or water. In order to extract hydrogen from these compounds, you have to exert energy. The required energy may come in the form of heat, electricity or even light.
P­ollution reduction is one of the primary goals of the fuel cell. By comparing a fuel-cell-powered car to a gasoline-engine-powered car and a battery-powered car, you can see how fuel cells might improve the efficiency of cars today.
Since all three types of cars have many of the same components (tires, transmissions, et cetera), we'll ignore that part of the car and compare efficiencies up to the point where mechanical power is generated. Let's start with the fuel-cell car. (All of these efficiencies are approximations, but they should be close enough to make a rough comparison.)


The Honda FCX Concept Vehicle
Photo copyright 2007, courtesy AutoMotoPortal.com

Honda's FCX Concept Vehicle
  • If the fuel cell is powered with pure hydrogen, it has the potential to be up to 80-percent efficient. That is, it converts 80 percent of the energy content of the hydrogen into electrical energy. However, we still need to convert the electrical energy into mechanical work. This is accomplished by the electric motor and inverter. A reasonable number for the efficiency of the motor/inverter is about 80 percent. So we have 80-percent efficiency in generating electricity, and 80-percent efficiency converting it to mechanical power. That gives an overall efficiency of about 64 percent. Honda's FCX concept vehicle reportedly has 60-percent energy efficiency.
  • If the fuel source isn't pure hydrogen, then the vehicle will also need a reformer. A reformer turns hydrocarbon or alcohol fuels into hydrogen. They generate heat and produce other gases besides hydrogen. They use various devices to try to clean up the hydrogen, but even so, the hydrogen that comes out of them is not pure, and this lowers the efficiency of the fuel cell. Because reformers impact fuel cell efficiency, DOE researches have decided to concentrate on pure hydrogen fuel-cell vehicles, despite challenges associated with hydrogen production and storage. 

Gasoline and Battery Power Efficiency

T­he efficiency of a gasoline-powered car is surprisingly low. All of the heat that comes out as exhaust or goes into the radiator is wasted energy. The engine also uses a lot of energy turning the various pumps, fans and generators that keep it going. So the overall efficiency of an automotive gas engine is about 20 percent. That is, only about 20 percent of the thermal-energy content of the gasoline is converted into mechanical work.

A battery-powered electric car has a fairly high efficiency. The battery is about 90-percent efficient (most batteries generate some heat, or require heating), and the electric motor/inverter is about 80-percent efficient. This gives an overall efficiency of about 72 percent.
But that is not the whole story. The electricity used to power the car had to be generated somewhere. If it was generated at a power plant that used a combustion process (rather than nuclear, hydroelectric, solar or wind), then only about 40 percent of the fuel required by the power plant was converted into electricity. The process of charging the car requires the conversion of alternating current (AC) power to direct current (DC) power. This process has an efficiency of about 90 percent.

So, if we look at the whole cycle, the efficiency of an electric car is 72 percent for the car, 40 percent for the power plant and 90 percent for charging the car. That gives an overall efficiency of 26 percent. The overall efficiency varies considerably depending on what sort of power plant is used. If the electricity for the car is generated by a hydroelectric plant for instance, then it is basically free (we didn't burn any fuel to generate it), and the efficiency of the electric car is about 65 percent.

Scientists are researching and refining designs to continue to boost fuel cell efficiency. One approach is to combine fuel cell and battery-powered vehicles. Ford Motors and Airstream are developing a concept vehicle powered by a hybrid fuel cell drivetrain named the HySeries Drive. Ford claims the vehicle has a fuel economy comparable to 41 miles per gallon. The vehicle uses a lithium battery to power the car, while the fuel cell recharges the battery.

Ford's Airstream Concept Vehicle

Types of Fuel Cells

The Invention of the Fuel Cell
Sir William Grove invented the first fuel cell in 1839. Grove knew that water could be split into hydrogen and oxygen by sending an electric current through it (a process called electrolysis). He hypothesized that by reversing the procedure you could produce electricity and water. He created a primitive fuel cell and called it a gas voltaic battery. After experimenting with his new invention, Grove proved his hypothesis. Fifty years later, scientists Ludwig Mond and Charles Langer coined the term fuel cell while attempting to build a practical model to produce electricity.
The fuel cell will compete with many other energy­ conversion devices, including the gas turbine in your city's power plant, the gasoline engine in your car and the battery in your laptop. Combustion engines like the turbine and the gasoline engine burn fuels and use the pressure created by the expansion of the gases to do mechanical work. Batteries convert chemical energy back into electrical energy when needed. Fuel cells should do both tasks more efficiently.

A fuel cell provides a DC (direct current) voltage that can be used to power motors, lights or any number of electrical appliances.

There are several different types of fuel cells, each using a different chemistry. Fuel cells are usually classified by their operating temperature and the type of electrolyte they use. Some types of fuel cells work well for use in stationary power generation plants. Others may be useful for small portable applications or for powering cars. The main types of fuel cells include:

Polymer exchange membrane fuel cell (PEMFC)
The Department of Energy (DOE) is focusing on the PEMFC as the most likely candidate for transportation applications. The PEMFC has a high power density and a relatively low operating temperature (ranging from 60 to 80 degrees Celsius, or 140 to 176 degrees Fahrenheit). The low operating temperature means that it doesn't take very long for the fuel cell to warm up and begin generating electricity. We?ll take a closer look at the PEMFC in the next section.

Solid oxide fuel cell (SOFC)



These fuel cells are best suited for large-scale stationary power generators that could provide electricity for factories or towns. This type of fuel cell operates at very high temperatures (between 700 and 1,000 degrees Celsius). This high temperature makes reliability a problem, because parts of the fuel cell can break down after cycling on and off repeatedly. However, solid oxide fuel cells are very stable when in continuous use. In fact, the SOFC has demonstrated the longest operating life of any fuel cell under certain operating conditions. The high temperature also has an advantage: the steam produced by the fuel cell can be channeled into turbines to generate more electricity. This process is called co-generation of heat and power (CHP) and it improves the overall efficiency of the system.

Alkaline fuel cell (AFC)
This is one of the oldest designs for fuel cells; the United States space program has used them since the 1960s. The AFC is very susceptible to contamination, so it requires pure hydrogen and oxygen. It is also very expensive, so this type of fuel cell is unlikely to be commercialized.


Molten-carbonate fuel cell (MCFC)
Like the SOFC, these fuel cells are also best suited for large stationary power generators. They operate at 600 degrees Celsius, so they can generate steam that can be used to generate more power. They have a lower operating temperature than solid oxide fuel cells, which means they don't need such exotic materials. This makes the design a little less expensive.

Phosphoric-acid fuel cell (PAFC)
The phosphoric-acid fuel cell has potential for use in small stationary power-generation systems. It operates at a higher temperature than polymer exchange membrane fuel cells, so it has a longer warm-up time. This makes it unsuitable for use in cars.


Direct-methanol fuel cell (DMFC)
Methanol fuel cells are comparable to a PEMFC in regards to operating temperature, but are not as efficient. Also, the DMFC requires a relatively large amount of platinum to act as a catalyst, which makes these fuel cells expensive.
In the following section, we will take a closer look at the kind of fuel cell the DOE plans to use to power future vehicles -- the PEMFC.



No comments:

Post a Comment